Abelian bordered factors and periodicity
نویسندگان
چکیده
A finite word u is said to be bordered if u has a proper prefix which is also a suffix of u, and unbordered otherwise. Ehrenfeucht and Silberger proved that an infinite word is purely periodic if and only if it contains only finitely many unbordered factors. We are interested in abelian and weak abelian analogues of this result; namely, we investigate the following question(s): Let w be an infinite word such that all sufficiently long factors are (weakly) abelian bordered; is w (weakly) abelian periodic? In the process we answer a question of Avgustinovich et al. concerning the abelian critical factorization theorem.
منابع مشابه
On the number of Abelian Bordered Words (with an Example of Automatic Theorem-Proving)
In the literature, many bijections between (labeled) Motzkin paths and various other combinatorial objects are studied. We consider abelian (un)bordered words and show the connection with irreducible symmetric Motzkin paths and paths in Z not returning to the origin. This study can be extended to abelian unbordered words over an arbitrary alphabet and we derive expressions to compute the number...
متن کاملNon-Abelian Sequenceable Groups Involving ?-Covers
A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...
متن کاملAbelian returns in Sturmian words
Return words constitute a powerful tool for studying symbolic dynamical systems. They may be regarded as a discrete analogue of the first return map in dynamical systems. In this paper we investigate two abelian variants of the notion of return word, each of them gives rise to a new characterization of Sturmian words. We prove that a recurrent infinite word is Sturmian if and only if each of it...
متن کاملCharacterizations of Regular Almost Periodicity in Compact Minimal Abelian Flows
Regular almost periodicity in compact minimal abelian flows was characterized for the case of discrete acting group by W. Gottschalk and G. Hedlund and for the case of 0-dimensional phase space by W. Gottschalk a few decades ago. In 1995 J. Egawa gave characterizations for the case when the acting group is R. We extend Egawa’s results to the case of an arbitrary abelian acting group and a not n...
متن کاملQuantum Testers for Hidden Group Properties
We construct efficient or query efficient quantum property testers for two existential group properties which have exponential query complexity both for their decision problem in the quantum and for their testing problem in the classical model of computing. These are periodicity in groups and the common coset range property of two functions having identical ranges within each coset of some norm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 51 شماره
صفحات -
تاریخ انتشار 2016